The spectral radius of graphs without paths and cycles of specied length
نویسنده
چکیده
Let G be a graph with n vertices and (G) be the largest eigenvalue of the adjacency matrix of G: We study how large (G) can be when G does not contain cycles and paths of speci ed order. In particular, we determine the maximum spectral radius of graphs without paths of given length, and give tight bounds on the spectral radius of graphs without given even cycles. We also raise a number of natural open problems.
منابع مشابه
The spectral radius of graphs without paths and cycles of specified length
Let G be a graph with n vertices and μ (G) be the largest eigenvalue of the adjacency matrix of G. We study how large μ (G) can be when G does not contain cycles and paths of specified order. In particular, we determine the maximum spectral radius of graphs without paths of given length, and give tight bounds on the spectral radius of graphs without given even cycles. We also raise a number of ...
متن کاملOn list vertex 2-arboricity of toroidal graphs without cycles of specific length
The vertex arboricity $rho(G)$ of a graph $G$ is the minimum number of subsets into which the vertex set $V(G)$ can be partitioned so that each subset induces an acyclic graph. A graph $G$ is called list vertex $k$-arborable if for any set $L(v)$ of cardinality at least $k$ at each vertex $v$ of $G$, one can choose a color for each $v$ from its list $L(v)$ so that the subgraph induced by ev...
متن کاملSharp Bounds on the PI Spectral Radius
In this paper some upper and lower bounds for the greatest eigenvalues of the PI and vertex PI matrices of a graph G are obtained. Those graphs for which these bounds are best possible are characterized.
متن کاملCharacterization of signed paths and cycles admitting minus dominating function
If G = (V, E, σ) is a finite signed graph, a function f : V → {−1, 0, 1} is a minusdominating function (MDF) of G if f(u) +summation over all vertices v∈N(u) of σ(uv)f(v) ≥ 1 for all u ∈ V . In this paper we characterize signed paths and cycles admitting an MDF.
متن کاملOn Complementary Distance Signless Laplacian Spectral Radius and Energy of Graphs
Let $D$ be a diameter and $d_G(v_i, v_j)$ be the distance between the vertices $v_i$ and $v_j$ of a connected graph $G$. The complementary distance signless Laplacian matrix of a graph $G$ is $CDL^+(G)=[c_{ij}]$ in which $c_{ij}=1+D-d_G(v_i, v_j)$ if $ineq j$ and $c_{ii}=sum_{j=1}^{n}(1+D-d_G(v_i, v_j))$. The complementary transmission $CT_G(v)$ of a vertex $v$ is defined as $CT_G(v)=sum_{u in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009